

CORRECTIONS

Christian Seidel: Strongly Stretched Polyelectrolyte Brushes. Volume 36, Number 7, April 8, 2003, pp 2536–2543.

Because of a numerical error, unfortunately the simulations were effectively carried out at Bjerrum lengths different from those given in the paper. In fact strongly stretched brushes were simulated not at $\lambda_{\rm B}=0.1\sigma$ but instead at $\lambda_{\rm B}{\approx}2\sigma$. In addition to that, the numerical error causes a weak dependence of the real Bjerrum length on grafting density that has some influence on the exact value of stretching in the strongly elongated regime at small anchoring densities. Figure 1 and Figure 4 should have appeared as shown here. Maximum stretching occurs at $\lambda_{\rm B}\approx b$. Although at intermediate coupling strength the slope of $log(\langle z_m\rangle)$ vs $log(\rho_a)$ is reduced from 0.2 to 0.12, the slight brush height

Figure 1. Average height of chain ends $\langle z_{\rm e} \rangle$ (squares) and Gouy–Chapman length $\lambda_{\rm GC}$ (solid line), both rescaled with the contour length Nb (N = 20), vs Bjerrum length $\lambda_{\rm B}$ at grafting density $\rho_{\rm a}\sigma^2=0.02$. The dashed line indicates $\langle z_{\rm e} \rangle$ of an identical system of uncharged chains.

Figure 4. Average brush height $\langle z_{\rm m} \rangle$ (filled symbols) and average counterion height $\langle z_{\rm ci} \rangle$ (empty symbols) of completely charged polyelectrolyte brushes vs anchoring density both for $\lambda_{\rm B}=\sigma$ (triangles, new results) and $\lambda_{\rm B}\approx 14\sigma$ (diamonds). Error bars are smaller than symbol size.

variation upon lateral compression, meanwhile also detected in experiments, is still in agreement with the theoretical predictions of the nonlinear osmotic brush regime.¹

Acknowledgment. I thank Arun Kumar for his support in checking the simulation code and performing control simulations.

References and Notes

 Ahrens, H.; Förster, S.; Helm, C. A.; Kumar, N. A.; Naji, A.; Netz, R. R.; Seidel, C. J. Phys. Chem. B 2004, 108, 16870.

MA0501500

10.1021/ma0501500 Published on Web 02/05/2005